Неравенства с одной переменной под знаком модуля графики

УРАВНЕНИЯ И НЕРАВЕНСТВА, СОДЕРЖАЩИЕ ЗНАК МОДУЛЯ - Студенческий научный форум

неравенства с одной переменной под знаком модуля графики

Решаем получившееся уравнение с одной переменной. Находим Графический способ с дальнейшей заменой на совокупность из трех систем Способы решения неравенств с переменной под знаком модуля. -обучающие: изучить графический метод решения неравенств с двумя неравенств с одной переменной, содержащих знак модуля. Уравнения Выпускник научится: • решать основные виды рациональных уравнений с одной переменной, системы двух уравнений с двумя переменными; • решать уравнения, содержащие знак модуля, уравнения с параметрами, графические представления для исследования уравнений с одной и двумя.

Неравенства с модулем: примеры и достаточные знания, необходимые для решения заданий

Решение уравнений и неравенств графическим способом. Неравенства с двумя переменными, содержащие модуль на координатной плоскости. Изображение фигур на плоскости, задаваемых неравенствами. Определения, свойства, геометрический смысл.

неравенства с одной переменной под знаком модуля графики

МодульМодуль - абсолютная величина числа, равная расстоянию от начала отсчета до точки на числовой прямой. Модуль числа a или абсолютная величина числа a равна a, если a больше или равно нулю и равна -a, если a меньше нуля: Из определения следует, что для любого действительного числа a: Это многозначное слово омонимкоторое имеет множество значений и применяется не только в математике, но и в архитектуре, физике, технике, программировании и других точных науках.

В архитектуре — это исходная единица измерения, устанавливаемая для данного архитектурного сооружения и служащая для выражения кратных соотношений его составных элементов.

  • Урок «Неравенства с двумя переменными, содержащие знак модуля»
  • Методы решения уравнений, неравенств и их систем
  • РЕШЕНИЕ УРАВНЕНИЙ И НЕРАВЕНСТВ, СОДЕРЖАЩИХ ПЕРЕМЕННУЮ ПОД ЗНАКОМ МОДУЛЯ. - презентация

В технике — это термин, применяемый в различных областях техники, не имеющий универсального значения и служащий для обозначения различных коэффициентов и величин, например, модуль зацепления, модуль упругости и. Модуль объемного сжатия в физике — отношение нормального напряжения в материале к относительному удлинению. Каждой точке числовой прямой соответствует ее расстояние от начала отсчета или длина отрезка, начало которого в точке начала отсчета, а конец — в данной точке.

Это расстояние или длина отрезка рассматривается всегда как величи6на неотрицательная.

неравенства с одной переменной под знаком модуля графики

Таким образом, геометрическая интерпретация модуля действительного числа a будет рассматриваться от начала отсчета до точки, изображающей число. Доказать, что данное выражение — целое число: Укажите наименьшее по модулю число.

неравенства с одной переменной под знаком модуля графики

Укажите наибольшее по модулю число. Вычислите - 14,5 - - 4,1: Вариант — 1 1. Решение уравнений, содержащих модуль аналитически Цели: Дайте определение модуля числа. Дайте геометрическое истолкование модуля.

неравенства с одной переменной под знаком модуля графики

Может ли равняться нулю значение разности 2 x - x? Как сравниваются два отрицательных числа? Объяснение нового материала Рассмотрим примеры решения уравнений, содержащих абсолютные величины: Некоторые уравнения и неравенства с модулем решаются проще с помощью геометрических соображений. Решить самостоятельно x x73 Решение на основе геометрической интерпретации На расстоянии 4 от 3 лежат две точки -1 и 7, а 2х есть одна из.

Неравенства, содержащие знак модуля

Преобразуем полученное выражение, при условии. Получим систему, равносильную исходному уравнению: Решив данную систему получим ответ Ответ: Поскольку левая часть уравнения неотрицательна, при всех допустимых значениях переменной, на множестве корней уравнения правая его часть тоже должна быть неотрицательной, отсюда условиена этом промежутке знаменатели обеих дробей равны.

Урок «Неравенства с двумя переменными, содержащие знак модуля»

Получим систему равносильную исходному уравнению: Полученное уравнение нетрудно решить одним из основных методов, таким образом получив ответ исходного уравнения Ответ: Свернём подкоренные выражения слагаемых по формулам квадратов суммы и разности и применим вышеупомянутое тождество: Продемонстрируем решение неравенства, применяя теорему о знаках, формулировка которой следующая: Используя формулу разности квадратов, разложим числитель и знаменатель на множители и решим полученное рациональное неравенство.

Рассмотрим решение неравенства путём домножения на положительных множитель. Умножим дробь на некоторое выражение, принимающее лишь положительные значения и такое, чтобы упростить исходное неравенство: Решив полученное рациональное неравенство методом интервалов получим решение первоначального неравенства Ответ: Уравнения и неравенства с модулем, содержащие параметры рационально решать одним из основных методов, а именно графическим.

Продемонстрируем решение сложной задачи с параметром, содержащую уравнение с модулем.

Решение уравнений и неравенств, содержащих переменную под знаком модуля

Найти такие значения параметрапри которых уравнение имеет ровно корней [4]. Построив график функции используя правило построения графиков функций вида и рассмотрев все случаи, в зависимости от параметра легко увидеть, что искомое равенство достигается только в случае рис. Таким образом, мы продемонстрировали многообразие способов и приёмов решения уравнений и неравенств, содержащих переменную под знаком модуля, и выделили наиболее рациональные в тех или иных случаях.

Заключение В данной работе изложены вопросы, касающиеся понятия абсолютной величины числа, уравнений и неравенств, содержащих переменную под знаком модуля.